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Bass traps for listening rooms in the form of membrane absorbers are highly popular due to 
their simple construction and their broad bandwidth. Numerous equations for the calculation 
of the resonance frequencies of such absorbers are found on the internet. However, there are 
many different equations around, some of which are in obvious mutual contradiction. It is not 
clear which equations can be used and which ones are simply wrong. Furthermore, the 
equations are frequently given in numerical form, but it is not stated in which units the 
parameters have to be entered. I could not find a source for a derivation of the resonance 
frequency. Therefore I decided to calculate the resonance frequency of a panel absorber by 
myself and present the result in this note.  
 
A panel absorber consists of a gas filled cavity, a rigid resonator body, closed by a membrane. 
Oscillations of the membrane are excited by incoming sound waves. The motion of the 
membrane leads to compression of the gas in the absorber. The energy of the incoming wave 
is dissipated as heat in the enclosed volume. 
 
The absorber can be treated as a spring-mass system. It has a resonant frequency at which it 
works most effectively. The absorber can therefore be tuned by the geometry of the system 
and can be adapted to the desired frequency range. An exact treatment of the system is very 
difficult. In the following, an approximation to the problem is given, which will however lead 
to a practically usable result. 
 
Consider an absorber of (internal) thickness t and a membrane of mass m and area A. The 
volume of the included air is then given by V = At. As an approximation we assume that the 
membrane oscillates as a whole, that is, it moves without deformation into the rigid resonator 
body and compresses the enclosed volume of air (Fig. 1).  
 
 

 
Fig. 1: Schematic of the membrane resonator 

 
As the membrane moves by a small distance into the resonator body, the included volume V 
is reduced by ∆V = Ax. This leads to a pressure increase p∆ in the gas and accordingly the 
force apF ⋅∆= acts on the membrane. Let us set up an equation of motion using Newtons 
first law 22 dtxdmF =  , where m is the mass of the membrane. The mass of the membrane 
can generally be written as Am A ⋅ρ= , where Aρ  is the area density (mass per area) of the 
membrane material. Putting all this together we obtain 
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The gas in the volume is compressed adiabatically (i.e. so fast that the heat cannot be 
transported away). Therefore the standard relation for ideal gases 
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where p and V are the initial pressure and volume, respectively, and γ is the ratio of specific 
heats at constant pressure and volume of the gas. Inserting the volumes we obtain  
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which leads to an expression for the pressure change p∆ . Combining (1) and (3) we arrive at 
the relation 
 

x
t

p
dt

xd

A
2

2

ρ
κ

−= .     (4) 

This is the equation of an harmonic oscillator (the restoring force is proportional to the 
displacement). The frequency f of the oscillator, corresponding to the eigenfrequency of the 
absorber, is then given by  
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Finally, we can express the velocity of sound in a gas as a function of the density of the gas 
ρ , the pressure and the ratio of the heat capacities. ρκ= pc . This leads us to the final 
result 
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with: c: sound velocity in the gas 
 ρ: mass density of the gas 
 ρA: area density (mass per area) of the membrane  
 t: inner thickness of the resonator 
 
This general equation can be transformed into a numerical form for practical use. Commonly, 
the cavity is filled with air. The density of air at room temperature is about 1.29 kg/ m3 and 
the speed of sound is 344 m/s. Equation (6) can then be written as  
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where we have calculated the constant as 
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. So note that this constant has the 

unit sms 1− . The complete expression thus yields the correct unit of a frequency, 1s−  or Hz. 
Note furthermore, that with the transition from (6) to (7), we have fixed the units. The area 



density has to be entered in kg/m2 and the thickness of the absorber in m. Equation (7) is one 
of the expressions frequently found in the internet. Now you know where it comes from.  
 
Tuning of the resonator can be done by variation of the geometry of the resonator (a thicker 
body results in a lower resonant frequency) and by the mass density of the membrane (a 
heavier membrane will lead to a lower frequency). Note however, that this does not mean that 
you should use a thicker membrane. With a thick membrane the approximation made for the 
derivation will be less precise (if not fully violated) and the resonance frequency will be 
different (see below) and coupling to the incoming sound wave will be worse. You can, 
however, use a material with a high mass density, e.g. a steel plate. There are also some less 
obvious ways to tune the absorber. Filling the cavity with a heavier gas will lead to a lower 
frequency. This, however, is a tuning means not very useful in practice.  
 
Notes on the approximation made:  
For the derivation presented, it is assumed that the membrane moves as a whole without any 
deformation. This, of course is a crude approximation of what happens in reality. Since the 
real membrane is fixed to the rigid resonator body, it will deform if subjected to the incoming 
sound wave and oscillates like the string of a guitar or a violin (Fig. 2).  
 

 
 

Fig. 2: More realistic vibration mode of  the membrane  
 
The resonant frequency will therefore be determined not only by the compression of the 
enclosed gas but also by the elastic moduli and the geometry (thickness and size) of the 
membrane. Due to the weak coupling of the incoming sound wave and the membrane, the 
latter will vibrate in its lowest eigenmode, i.e. the lateral dimension of the membrane will be 
equal to half a wavelength. For this lowest eigenmode, the above approximation of a rigid 
membrane will be better than for the higher eigenmodes.For a bass trap, the frequency range 
one wants to absorb are of the order of some ten to some hundred Hz. This corresponds to 
rather large wavelengths of the membrane. Therefore its lateral dimensions should not be too 
small. A large membrane will facilitate coupling to the incoming sound wave. These 
arguments correspond to comments made that the edge lengths of the absorber should exceed 
0.5 m.  
The frequently quoted preferable aspect ratio of 1:1.5 to 1:1.7 can not be reproduced from the 
above treatment. According to the calculation, an aspect ratio of say 1:1 should be equally 
effective.  
 
Damping: 
The volume in the cavity can be filled with damping material, e.g. rigid fiberglass. Damping 
will have the following results: First, the bandwidth of the resonator will be wider (a general 
feature of damping of an oscillator). Second, the dissipation of energy in the cavity will be 
more effective. 
 


